MULTI-CRITERIA ANALYSIS OF INVESTMENT EFFICIENCY IN ENERGY SAVING: AN ANALYTIC HIERARCHY PROCESS APPROACH
Keywords:
energy saving, multi-criteria analysis, efficiency of energy saving investments, ecological-economic efficiency indicators, analytic hierarchy process approach.Abstract
Multi-criteria analysis approaches of investment efficiency in energy saving measures in buildings have been improved by taking into account economic, social, ecological and technical criteria. Developed hierarchy of criteria combines quantitative and qualitative indicators in the investment decision making process. This model has a modular implementation, which makes it possible to adapt the model considering limits of information provision, time budget and funds of a particular investment project. Application of the proposed multicriteria assessment allows choosing among the possible alternatives energy saving measures, which, in addition to obtaining financial benefits, will reduce the negative flow of the environment and will not have negative impacts on human health. Developed methodological approaches to assessing the environmental and economic efficiency of investment can be applied in conducting tenders, as well as, in investment decision making process or financial incentives for projects.References
Харічков С., Андрєєва Н. Зелені інвестиції як каталізатор переходу до нового курсу розвитку економіки: міжнародні орієнтири і перспективи впровадження. Економіст. 2010. № 12. 16–21.
Sullivan R. Responsible investment. Routledge, New York, 2017.
Федорук М. І., Загвойська Л. Д. Інтегрована оцінка ефективності заходів енергозбереження в будівлях, отримані за допомогою програмного забезпечення SimaPro8. Науковий вісник
НЛТУ України. 2017. Вип. 27(7). С. 14–20.
Dunkelberg E., Weiß J., Ökologische Bewertung energetischer Sanie-rungsoptionen, Gebäude-Energiewende. 2016.
Hikmat H., Saba F.N. Developing a green building assessment tool for
developing countries – case of Jordan. Build. Environ. 44. 2009. Рр. 1053–1064.
Saaty T. L. The analytic hierarchy process: planning, priority setting,
resources allocation. McGraw, New York, 1980.
Загвойська Л. Д., Шведюк Ю. В. Еколого-економічна оцінка ефективності альтернативних способів лісовідновлення в умовах рівнинної частини Львівської області. Науковий вісник НЛТУ України. 2011. Львів : НЛТУ України, 2011. Вип. 21.10. С. 77–84.
Doukas H., Nychtis C., Psarras J. Assessing energy-saving measures in buildings through an intelligent decision support model. Build. Environ. 44 (2009) 290–298.
Mikučionienė R., Martinaitis V., Keras E. Evaluation of energy efficiency measures sustainability by decision tree method. Energy Build. 76 (2014). doi:https://doi.org/10.1016/j.enbuild.2014.02.048.
Petersen S., Svendsen S. Method for component-based economical optimisation for use in design of new low-energy buildings. Renew. energy. 38 (2012) 173–180.
Hobbs B. F., Meier P. Energy decisions and the environment: a guide to the use of multicriteria methods (Vol. 28)., Springer Science & Business Media., New York, 2003.
Bribián I. Z., Capilla A. V., Usón A. A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46 (2011) 1133–1140. doi:https://doi.org/10.1016/j.buildenv.2010.12.002.
Dylewski R., Adamczyk J. Economic and environmental benefits of thermal insulation of building external walls. Build. Environ. 46 (2011) 2615–2623. doi:10.1016/j.buildenv.2011.06.023.
Martinaitis V., Kazakevičius E., Vitkauskas A. A two-factor method for appraising building renovation and energy efficiency improvement projects. Energy Policy. 35 (2007) 192–201.
Chantrelle F. P., Lahmidi H., Keilholz W., El Mankibi M. & Michel Р.
Development of a multicriteria tool for optimizing the renovation of buildings. Appl. Energy. 88 (2011) 1386–1394.
Frontczak M., Andersen R. V., Wargocki P. Questionnaire survey on factors influencing comfort with indoor environmental quality in Danish housing. Building and Environment. 50 (2012) 56–64.
Brown N. W., Malmqvist T., Bai W., Molinari M. Sustainability assessment of renovation packages for increased energy efficiency for multifamily buildings in Sweden. Building and Environment. 61, 140–148. 18. Zundel S., Stieß I. Beyond profitability of energy-saving measures – attitudes towards energy saving. J. Consum. Policy. 34 (2011) 91–105. 19. Liddell C., Morris C. Fuel poverty and human health: a review of recent evidence. Energy Policy. 38 (2010) 2987–2997.
Kharichkov S., Andrieieva N. Zeleni investytsii yak katalizator perekhodu do novoho kursu rozvytku ekonomiky: mizhnarodni oriientyry i perspektyvy vprovadzhennia. Ekonomist. 2010. № 12. 16–21.
Sullivan R. Responsible investment. Routledge, New York, 2017.
Fedoruk M. I., Zahvoiska L. D. Intehrovana otsinka efektyvnosti zakhodiv enerhozberezhennia v budivliakh, otrymani za dopomohoiu prohramnoho zabezpechennia SimaPro8. Naukovyi visnyk NLTU Ukrainy. 2017. Vyp. 27(7). S. 14–20.
Dunkelberg E., Weiß J. Ökologische Bewertung energetischer Sanie-rungsoptionen, Gebäude-Energiewende. 2016.
Hikmat H., Saba F.N. Developing a green building assessment tool for developing countries – case of Jordan. Build. Environ. 44. 2009. P. 1053–1064.
Saaty T. L. The analytic hierarchy process: planning, priority setting, resources allocation, McGraw, New York, 1980.
Zahvoiska L. D., Shvediuk Yu. V. Ekoloho-ekonomichna otsinka efektyvnosti alternatyvnykh sposobiv lisovidnovlennia v umovakh rivnynnoi chastyny lvivskoi oblasti. Naukovyi visnyk NLTU Ukrainy. 2011. Lviv : NLTU Ukrainy, 2011. Vyp. 21.10. S. 77–84.
Doukas H., Nychtis C., Psarras J. Assessing energysaving measures in buildings through an intelligent decision support model. Build. Environ. 44 (2009) 290–298.
Mikučionienė R., Martinaitis V., Keras E. Evaluation of energy efficiency measures sustainability by decision tree method. Energy Build. 76 (2014). doi:https://doi.org/10.1016/j.enbuild.2014.02.048.
Petersen S., Svendsen S. Method for component-based economical
optimisation for use in design of new low-energy buildings. Renew. energy. 38 (2012) 173–180.
Hobbs B. F., Meier P. Energy decisions and the environment: a guide to the use of multicriteria methods (Vol. 28)., Springer Science & Business Media., New York, 2003.
Bribián I. Z., Capilla A. V., Usón A. A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46 (2011) 1133–1140. doi:https://doi.org/10.1016/j.buildenv.2010.12.002.
Dylewski R., Adamczyk J. Economic and environmental benefits of thermal insulation of building external walls. Build. Environ. 46 (2011) 2615–2623. doi:10.1016/j.buildenv.2011.06.023.
Martinaitis V., Kazakevičius E., Vitkauskas A. A two-factor method for appraising building renovation and energy efficiency improvement projects. Energy Policy. 35 (2007) 192–201.
Chantrelle F. P., Lahmidi H., Keilholz W., El Mankibi M. & Michel Р.
Development of a multicriteria tool for optimizing the renovation of buildings. Appl. Energy. 88 (2011) 1386–1394.
Frontczak M., Andersen R. V., Wargocki P. Questionnaire survey on factors influencing comfort with indoor environmental quality in Danish housing. Building and Environment. 50 (2012) 56–64.
Brown N. W., Malmqvist T., Bai W., Molinari M. Sustainability
assessment of renovation packages for increased energy efficiency for multifamily buildings in Sweden. Building and Environment. 61, 140–148. 18. Zundel S., Stieß I. Beyond profitability of energy-saving measures – attitudes towards energy saving. J. Consum. Policy. 34 (2011) 91–105. 19. Liddell C., Morris C. Fuel poverty and human health: a review of recent evidence. Energy Policy. 38 (2010) 2987–2997.