CO2 EMISSIONS FROM SOILS UNDER ENERGY CULTURES

Authors

  • T. V. Morozova National Transport University, Kyiv
  • O. A. Likho National University of Water and Environmental Engineering

DOI:

https://doi.org/10.31713/vs220227

Keywords:

energy crops, soil "breathing", CO2 dissipation into the atmosphere.

Abstract

Global warming is one of the most important environmental problems today, which is why studying the impact of any factor on CO2 outflow is an important task. Despite numerous studies, the effect of growing energy crops on CO2 emissions from soils remains unclear.The article presents the results of the study of the intensity of "respiration" of soils under energy crops under different fertilizer systems. It is shown that the differences in carbon dioxide emissions from the soil under different energy crops depended on the temperature, humidity, organic matter content and peculiarities of cultivation. Intensification of this process after plowing is noted.The seasonal dynamics of the potential capacity of the soil to produce CO2 under the same conditions of humidity and temperature with a maximum in July and gradual extinction by autumn is noted. It is determined that daily fluctuations in the intensity of CO2 emissions are 5-10% of the average daily level. A decrease in CO2 emissions was found in June with a further increase in July, which may be due to hot conditions, which caused a depressing effect on the growth and development of the soil microbiota.The influence of cultivated culture on the dynamics of CO2 emission index has been studied. Due to root respiration, the total flow of CO2 from the soil surface increases by an average of 1.2– 6 times in the cultivation of energy crops, which indicates differences in metabolic processes. The fertilizer system affects the production of CO2 by the soil and largely depends on weather conditions. Favorable hydrothermal conditions activate the activity of the soil microflora of the arable soil layer.In general, studies have confirmed the importance and necessity of monitoring soil respiration as an indicator of the stability of agroecosystems in the context of climate change.

Author Biographies

T. V. Morozova, National Transport University, Kyiv

Candidate of Biological Sciences (Ph.D.), Associate Professor , Rivne) 

O. A. Likho, National University of Water and Environmental Engineering

Candidate of Agricultural Sciences (Ph.D.), Associate Professor

References

Александров Г. А., Соколов М. А., Степанов А. Л. Сравнительный анализ методов измерения эмиссии газов из почвы в атмосферу. Почвоведение. 1996. № 10. С. 1192–1194.

Буджерак А. И., Гудим В. И., Тищенко Л. Д., Фирко В. Ю. Нетрадиционные удобрения в ХХ веке : информ. лист № 03. 1992. 4 с. 3. Вплив органічного добрива Проферм на еколого-агрохімічний стан ґрунту і врожайність картоплі / В. Б. Гаврилюк, Г. М. Гаврилюк, Ю. М. Кух, В. А. Борт-нік. Агроекологічний журнал. 2009. № 2. С. 58–63.

Капустянчик С. Ю., Лихе-нко И. Е., Данилова А. А. Продуктивность мискантуса сорта сорановский пер-вого года вегетации и дыхательная активность почвы. Пермский аграрный вестник. 2016. № 4. С. 82–87. 5. Кудеяров В. Н., Курганова И. Н. Влияние свойств пахотных почв и их загрязнения фторидами на эмиссию СО2. Почво-ведение. 2005. № 9. С. 1112–1121. URL: http://www.pochva.com. (дата звер-нення: 04.05.2022).

Ларионова А. А., Розанова Л. Н., Самойлов Т. И. Динами-ка газообмена в профиле серой лесной почвы. Почвоведение. 1988. № 11. С. 68–74.

Ларионова А. А., Розанова Л. Н., Самойлов Т. И. Динамика газообме-на в профиле серой лесной почвы. Почвоведение. 1988. № 11. С. 68–74.

Ме-няйло О. В. Влияние лесовосстановления на минерализацию органического вещества в почве. Экология. 2008. № 1. С. 23–27 / Menyailo O. V. The effect of affores tation on mineralization of soil organic matter. Rus. J. of Ecology. 2008. V. 39(1). P. 21–25.

Паников Н. С., Соловьев Г. А., Афремова В. Д. Биологическая продуктивность систематически удобряемого сенокосного луга на аллюви-альной луговой почве. Вестник Моск. ун-та. 1989. № 1. С. 58–66.

Помаз-кина Л. В., Котова Л. Г., Лубнина Е. В. Биогеохимический мониторинг и оцен-ка режимов функционарования агроэкосистема на техногеннозагрязненных почвах. Новосибирск : Наука. Сибирская издательская фирма РАН, 1999. 208 с.

Трофименко П. І., Борисов Ф. І. Наукове обґрунтування алгоритму застосу-вання камерного статичного методу визначення інтенсивності емісії парнико-вих газів із ґрунту. Агрохімія і ґрунтознавство. 2015. URL: http://agrosoil.yolasite.com/2015_AiG_83_pp_17-24_UA.pdf. (дата звернення: 04.05.2022).

Федоров-Давыдов Д. Г. Дыхательная активность тундровых биоценозов и почв Колымской низменности. Почвоведение. 1998. № 3.

С. 291–301.

Хазиев Ф. Х. Температура и влажность как экологические фак-торы биологической активности почв. Экология. 1976. № 6. С. 50–55.

Чамурлиев О. Г., Карпов М. В., Зинченко Е. В. Водопотребление и продук-тивность сорго на зерно в зависимости от основной обработки почвы и норм посева семян на орошаемых светлокаштановых почвах Нижнего Поволжья. Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. 2012. № 2 (26). С. 46–51.

De Jong E., Redmann R., Ripley E. A. A comparison of methods to measure soil respiration. Soil Sci. 1979. V. 127. P. 300–306.

Dijkstra P., Williamson C.,

Menyailo O. et al. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest meadow. Isotopes Environ. Health Stud. 2003. V. 39. P. 29–39.

Freiziene D., Kadziene G. The influence of soil organic carbon, moisture and temperature on soil surface CO2 emission in the 10th year of different tillage-fertilization management. Zemdirbyste Agriculture. 2008. Vol. 95. № 4 P. 29–45.

Gadgil R. L., Gadgil P. D. Suppression of litter decomposition by mycorrhizal roots of Pinus radiate. NZ J. For. Sci. 1975. V. 5. P. 33–41.

Heinemeyer A., Di Bene C., Lloyd A.R. et al. Soil respiration: implications of the plantsoil continuum and respiration chamber collarinsertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Euro pean J. of Soil Sci. 2011. V. 62. P. 82–94. 20. Lundergдrth H. Carbon dioxide evolu-tion of soil and crop grows. Soil Sciences. 1997. Vol. 23. № 6. Р. 417–453.

Menyailo O. V., Huwe B. C. N-mineralization and denitrification as function of temperature and water potential in organic and mineral horizons of forest soil. J. Plant Nutr. Soil Sci. 1999. V. 162. P. 527–531. 22. Subke J. A., Inglima I., Cotrufo M. F. Trends and method ological impacts in soil CO2 efflux partitioning: A meta-analytical review. Global Change Biology. 2006. V. 12.

P. 921–943.

Vose J. M., Elliott K. J., Johnson D. W. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods. Ad-vances in soil Science. Soil and global change / EdsLar R. et al. CRC. 1995. Lewis Publishers, Boca Raton. P. 199–208.

REFERENCES:

Aleksandrov G. A., Sokolov M. A., Stepanov A. L. Sravnitelnyiy analiz metodov izmereniya emissii gazov iz pochvyi v atmosferu. Pochvovedenie. 1996. № 10. S. 1192–1194.

Budjerak A. I., Gudim V. I., Tischenko L. D., Firko V. YU. Netraditsionnyie udobreniya v HH veke : inform. list № 03. 1992. 4 s.

Vplyv orhanichnoho dobryva Proferm na ekoloho-ahrokhimichnyi stan gruntu i vrozhainist kartopli / V. B. Havryliuk, H. M. Havryliuk, Yu. M. Kukh, V. A. Bortnik. Ahroekolohichnyi zhurnal. 2009. № 2. S. 58–63.

Kapustyanchik S. Yu., Lihenko I. E., Danilova A. A. Produktivnost miskantusa sorta soranovskiy pervogo goda vegetatsii i dyihatelnaya aktivnost pochvyi. Permskiy agrarnyiy vestnik. 2016. № 4. S. 82–87.

Kudeyarov V. N., Kurganova I. N. Vliyanie svoystv pahotnyih pochv i ih zagryazneniya ftoridami na emissiyu SO2. Pochvovedenie. 2005. № 9. S. 1112–1121. URL: http://www.pochva.com (data zvernennya: 04.05.2022).

Larionova A. A., Rozanova L. N., Samoylov T. I. Dinamika gazoobmena v profile seroy lesnoy pochvyi. Pochvovedenie. 1988.

№ 11. S. 68–74.

Larionova A. A., Rozanova L. N., Samoylov T. I. Dinamika gazoobmena v profile seroy lesnoy pochvyi. Pochvovedenie. 1988. № 11. S. 68–74.

Menyaylo O. V. Vliyanie lesovosstanovleniya na mineralizatsiyu organicheskogo veschestva v pochve. Ekologiya. 2008. № 1. S. 23–27 / Menyailo O. V. The effect of affores tation on mineralization of soil organic matter. Rus. J. of Ecology. 2008. V. 39(1). P. 21–25.

Panikov N. S., Solovev G. A., Afremova V. D. Biologicheskaya produktivnost sistematicheski udobryaemogo se-nokosnogo luga na allyuvialnoy lugovoy pochve. Vestnik Mosk. un-ta. 1989. № 1. S. 58–66. 10. Pomazkina L. V., Kotova L. G., Lubnina E. V. Bio-geohimicheskiy monitoring i otsenka rejimov funktsionarovaniya agro-ekosistema na tehnogennozagryaznennyih pochvah. Novosibirsk : Nauka. Sibirskaya izdatelskaya firma RAN, 1999. 208 s.

Trofymenko P. I., Borysov F. I. Naukove obgruntuvannia alhorytmu zastosuvannia kamernoho statychnoho metodu vyznachennia intensyvnosti emisii parnykovykh haziv iz gruntu. Ahrokhimiia i gruntoznavstvo. 2015. URL: http://agrosoil.yolasite.com/2015_AiG_83_pp_17-24_UA.pdf. (data zvernennia: 04.05.2022).

Fedorov-Davyidov D. G. Dyihatelnaya aktivnost tundrovyih biotsenozov i pochv Kolyimskoy nizmennosti. Pochvovedenie. 1998. № 3.

S. 291–301.

Haziev F. H. Temperatura i vlajnost kak ekologicheskie faktoryi biologicheskoy aktivnosti pochv. Ekologiya. 1976. № 6. S. 50–55.

Chamurliev O. G., Karpov M. V., Zinchenko E. V. Vodopotreblenie i produktivnost sorgo na zerno v zavisimosti ot osnovnoy obrabotki pochvyi i norm poseva semyan na oroshaemyih svetlokashtanovyih pochvah Nijnego Povoljya. Izvestiya Nijnevoljskogo agrouniversitetskogo kompleksa: nauka i vyisshee professionalnoe obrazovanie. 2012. № 2 (26). S. 46–51.

De Jong E., Redmann R., Ripley E. A. A comparison of methods to measure soil respiration. Soil Sci. 1979. V. 127. P. 300–306.

Dijkstra P., Williamson C., Menyailo O. et al. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest meadow. Isotopes Environ. Health Stud. 2003. V. 39. P. 29–39.

Freiziene D., Kadziene G. The influence of soil organic carbon, moisture and temperature on soil surface CO2 emission in the 10th year of different tillage-fertilization management. Zemdirbyste Agriculture. 2008. Vol. 95. № 4

P. 29–45.

Gadgil R. L., Gadgil P. D. Suppression of litter decomposition by mycorrhizal roots of Pinus radiate. NZ J. For. Sci. 1975. V. 5. P. 33–41.

Heinemeyer A., Di Bene C., Lloyd A.R. et al. Soil respiration: implications of the plantsoil continuum and respiration chamber collarinsertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Euro pean J. of Soil Sci. 2011. V. 62. P. 82–94. 20. Lundergдrth H. Carbon dioxide evolu-tion of soil and crop grows. Soil Sciences. 1997. Vol. 23. № 6. Р. 417–453.

Menyailo O. V., Huwe B. C. N-mineralization and denitrification as function of temperature and water potential in organic and mineral horizons of forest soil. J. Plant Nutr. Soil Sci. 1999. V. 162. P. 527–531. 22. Subke J. A., Inglima I., Cotrufo M. F. Trends and method ological impacts in soil CO2 efflux partitioning: A meta-analytical review. Global Change Biology. 2006. V. 12.

P. 921–943.

Vose J. M., Elliott K. J., Johnson D. W. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods. Ad-vances in soil Science. Soil and global change / EdsLar R. et al. CRC. 1995. Lewis Publishers, Boca Raton. P. 199–208.

Published

2022-05-27

Issue

Section

Articles