REGULARITIES OF PERENNIAL CLIMATE CHANGES IN THE STEPPE ZONE OF UKRAINE

Authors

  • V. I. Pichura Kherson State Agrarian and Economic University),
  • L. O. Potraka Kherson State Agrarian and Economic University),
  • O. S. Biloshkurenko Kherson State Agrarian and Economic University),
  • M. M. Vozniuk National University of Water and Environmental Engineering, Rivne

Keywords:

climate change, air temperature, precipitation, time series analysis, mul-tidimensional statistics, Markov chains.

Abstract

Climate changes is differ by diversity, characterized by different levels of intensity of manifestations, the frequency of climatic anomalies, the periodicity of extreme weather events in space and time. The article presents a retrospective analysis of climate change in the southern subzone of the Steppe of Ukraine. The study used the annual values of surface air temperature and sum of precipitation at Kherson station, archival observation data for 120 years (1900–2019). The observation period with strong manifestations of anomalous temperatures is 45 years (37.5%) and 10 years (8.3%) with very strong anomalies of the temperature regime. During this period, there was an increase in average annual air temperature by 2.5° C. The absolute value of anomalies of annual precipitation was 26.7%. Three main periods of average annual air temperature and the amount of precipitation over a hundred years have been identified: decrease (early twentieth century), stabilization or balance (mid-twentieth century) and growth (late twentieth and early twenty-first century). Studies of intra-annual climate change have shown that in the long-term dynamics there is a manifestation of warming during the first 10 months at 2.4° C and an increase in average annual precipitation by 110 mm. The intra-cyclic properties of climatic indicators were determined using Markov chains. The inertial probability of recurrence of hot years is estimated at 0.48, and hot years after cold at 0.60. The inertial probability of recurrence of wet years was 0.50, wet years after dry – 0.47. It has been found that hot periods lasting 3–5 years are more likely than the same cold periods, and periods without rain lasting 3–5 years are more likely than periods with precipitation. This indicates a cyclical increase in average annual air temperature and a possible decrease in annual precipitation in the southern subzone of the Steppe of Ukraine. As a result of calculations of alternation of climatic periods, was determined the maximum probability for hot-cold periods 0.275 (t = 2) and for wet-dry periods 0.242 (t = 3).

Author Biographies

V. I. Pichura, Kherson State Agrarian and Economic University),

Doctor of Agricultural Sciences, Professor

L. O. Potraka, Kherson State Agrarian and Economic University),

Doctor of Economics, Professor

O. S. Biloshkurenko, Kherson State Agrarian and Economic University),

Senior Student

M. M. Vozniuk, National University of Water and Environmental Engineering, Rivne

Candidate of Agricultural Sciences (Ph.D.), Professor

References

Wang Q. J., Shao Y., Song Y., Schepen A., Robertson D. E., Ryu D., Pappen-bergerd F. An evaluation of ECMWF SEAS5 seasonal climate forecasts for Australia using a new forecast calibration algorithm. Environmental Modelling & Software. 2019. Vol. 122. Р. 104550. URL: https://doi.org/10.1016/j.envsoft.2019.104550. (да-та звернення: 30.07.2022). 2. Felice M. D., Soares M. B., Alessandri A., Troccoli A. 2019. Scoping the potential usefulness of seasonal climate forecasts for solar pow-er management. Renewable Energy. 2019. Vol. 142. P. 215–223. URL: https://doi.org/10.1016/j.renene.2019.03.134. (дата звернення: 30.07.2022). 3. Dikshit A., Pradhan B., Alamri A. M. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model. Science of The Total Environment. 2021. Vol. 755 (2). Р. 142638. URL: https://doi.org/10.1016/j.scitotenv.2020.142638. (дата звернення: 30.07.2022). 4. Zhang H., Huo S., Yeager K. M., Li C., Xi B., Zhang J.,, He Z., Ma C. Apparent relation-ships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system. Journal of Environmental Sciences. 2019. Vol. 83. P. 174–182. URL: https://doi.org/10.1016/j.jes.2019.03.024. (дата звернення: 30.07.2022).

Christidis. N., Stott P.A. The influence of anthropogenic climate change on wet and dry summers in Europe. Science Bulletin. 2021. URL: https://doi.org/10.1016/j.scib.2021.01.020. (дата звернення: 30.07.2022).

Paraschiv S., Paraschiv L. S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports. 2020. Vol. 6. P. 237–242. URL: https://doi.org/10.1016/j.egyr.2020.11.116. (дата звернення: 30.07.2022).

Sorokhtin O. G., Chilingar G. V., Sorokhtin N. O. Adiabatic Theory of the Green-house Effect. Developments in Earth and Environmental Sciences. 2011. Vol. 10. P. 469–498. URL: https://doi.org/10.1016/B978-0-444-53757-7.00013-1. (дата звер-нення: 30.07.2022). 8. Chaudhuri A. H., Gangopadhyay A., Bisagni J. J. Interannual variability of Gulf Stream warm-core rings in response to the North Atlantic Oscilla-tion. Continental Shelf Research. 2009. Vol. 29 (7). P. 856–869. URL: https://doi.org/10.1016/j.csr.2009.01.008. (дата звернення: 30.07.2022). 9. Weiser J., Titschack J., Kienast M., McCave I. N., Lochte A. A., Saini J., Stein R., Hebbeln D. Atlantic water inflow to Labrador Sea and its interaction with ice sheet dynamics during the Holocene. Quaternary Science Reviews. 2021. Vol. 256. Р. 106833. URL: https://doi.org/10.1016/j.quascirev.2021.106833. (дата звернення: 30.07.2022). 10. Lisetskii F., Chepelev O. Quantitative substantiation of pedogenesis model key components. Advances in Environmental Biology. 2014. Vol. 8(4). P. 996–1000. 11. Lisetskii F., Pichura V. Steppe Ecosystem Functioning of East European Plain under Age-Long Climatic Change Influence. Indian Journal of Science and Technology. 2016. Vol. 9(18). P. 1–9. DOI: 10.17485/ijst/2016/v9i18/93780. 12. Dudiak N. V., Po-travka L. A., Stroganov A. A. Soil and climatic bonitation of agricultural lands of the steppe zone of Ukraine. Indian Journal of Ecology. 2019. Vol. 46(3). P. 534–540. 13. Pichura V. I., Malchykova D. S., Ukrainskij P. A., Shakhman I. A., Bystriantseva A. N. Anthropogenic transformation of hydrological regime of the Dnieper river. Indian Journal of Ecology. 2018. Vol. 45(3). P. 445–453. 14. Pichura V. I., Potravka L. A., Skrypchuk P. M., Stratichuk N. V. Anthropogenic and climatic causality of changes in the hydrological regime of the Dnieper river. Journal of Ecological Engineering. 2020. Vol. 21 (4). P. 1–10. DOI: https://doi.org/10.12911/22998993/119521. 15. Oti J. O., Kabo-Bah A. T., Ofosu E. Hydrologic response to climate change in the Densu River Basin in Ghana. Heliyon. 2020. Vol. 6 (8). URL: https://doi.org/10.1016/j.heliyon.2020.e04722. (дата звернення: 30.07.2022). 16. Lisetskii F. Rivers in the focus of natural-anthropogenic situations at catchments. Geosciences (Switzerland). 2021. Vol. 11(2). P. 1–6. 17. Assan E., Suvedi M., Olabisi L. S., Bansah K. J. Climate change perceptions and challenges to adaptation among smallholder farmers in semi-arid Ghana: A gender analysis. Journal of Arid Envi-ronments. 2020. Vol. 182. Р. 104247. URL: https://doi.org/10.1016/j.jaridenv.2020.104247. (дата звернення: 30.07.2022). 18. Ukrainskiy P., Terekhin E., Gusarov A., Lisetskii F. Zelenskaya E. 2020. The influence of relief on the density of light-forest trees within the small-dry-valley network of uplands in the forest-steppe zone of eastern Europe. Geosciences (Switzerland). 2020. Vol. 10(11). P. 1–18. 19. Dudiak N. V., Pichura V. I., Potravka L. A., Stratichuk N. V. Geomodelling of destruction of soils of Ukrainian steppe due to water ero-sion. Journal of Ecological Engineering. 2019. Vol. 20(8). P. 192–198. URL: https://doi.org/10.12911/22998993/110789. (дата звернення: 30.07.2022). 20. Dudiak N. V., Pichura V. I., Potravka L. A., Stroganov A. A. Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecologi-cal Engineering. 2020. Vol. 21(2). P. 166–177. URL: https://doi.org/10.12911/22998993/116321. (дата звернення: 30.07.2022). 21. Breus D., Yevtushenko O., Skok S., Rutta O. Retrospective studies of soil fertility change on the example of the Kherson region (Ukraine). International Multidisci-plinary Scientific GeoConference Surveying Geology and Mining Ecology Manage-ment, SGEM. 2019. Vol. 19(5.1). Р. 645–652. 22. Breus D., Yevtushenko O., Skok S., Rutta O. 2020. Method of forecasting the agro-ecological state of soils on the ex-ample of the South of Ukraine. International Multidisciplinary Scientific GeoCon-ference Surveying Geology and Mining Ecology Management, SGEM. 2020. Vol. 20 (5.1). P. 523–528. 23. Lisetskii F. N.,

Pichura V. I. Catena linking of landscape-geochemical processes and reconstruc-tion of pedosedimentogenesis: A case study of defensive constructions of the mid-17th century, South Russia. Catena. 2020. Vol. 187. Р. 104300.

Domaratskiy E. O., Bazaliy V. V., Domaratskiy O. O., Dobrovolskiy A. V., Kyrychenko N. V., Kozlova O. P. Influence of mineral nutrition and combined growth regulating chemical on nutrient status of sunflower. Indian Journal of Ecol-ogy. 2018. Vol. 45(1). P. 126–129. 25. Maheras P. Changes in precipitation conditions in the western Mediterranean over the last century. J. Climatol. 1988. Vol. 8. P. 179–189. 26. Maheras P. Principal component analysis of western Mediterranean air temperature variations 1866–1985. Theor. Appl. Climatol. 1989. Vol. 39. P. 137–145.

REFERENCES:

Wang Q. J., Shao Y., Song Y., Schepen A., Robertson D. E., Ryu D., Pappen-bergerd F. An evaluation of ECMWF SEAS5 seasonal climate forecasts for Australia using a new forecast calibration algorithm. Environmental Modelling & Software. 2019. Vol. 122. Р. 104550. URL: https://doi.org/10.1016/j.envsoft.2019.104550. (data zvernennia: 30.07.2022). 2. Felice M. D., Soares M. B., Alessandri A., Troccoli A. 2019. Scoping the potential usefulness of seasonal climate forecasts for solar power management. Renewable Energy. 2019. Vol. 142. P. 215–223. URL: https://doi.org/10.1016/j.renene.2019.03.134. (data zvernennia: 30.07.2022). 3. Dikshit A., Pradhan B., Alamri A. M. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model. Science of The Total Environment. 2021. Vol. 755 (2). Р. 142638. URL: https://doi.org/10.1016/j.scitotenv.2020.142638. (data zvernennia: 30.07.2022). 4. Zhang H., Huo S., Yeager K. M., Li C., Xi B., Zhang J.,, He Z., Ma C. Apparent relation-ships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system. Journal of Environmental Sciences. 2019. Vol. 83. P. 174–182. URL: https://doi.org/10.1016/j.jes.2019.03.024. (data zvernennia: 30.07.2022).

Christidis. N., Stott P.A. The influence of anthropogenic climate change on wet and dry summers in Europe. Science Bulletin. 2021. URL: https://doi.org/10.1016/j.scib.2021.01.020. (data zvernennia: 30.07.2022).

Paraschiv S., Paraschiv L. S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports. 2020. Vol. 6. P. 237–242. URL: https://doi.org/10.1016/j.egyr.2020.11.116. (data zvernennia: 30.07.2022).

Sorokhtin O. G., Chilingar G. V., Sorokhtin N. O. Adiabatic Theory of the Green-house Effect. Developments in Earth and Environmental Sciences. 2011. Vol. 10. P. 469–498. URL: https://doi.org/10.1016/B978-0-444-53757-7.00013-1. (data zvernennia: 30.07.2022). 8. Chaudhuri A. H., Gangopadhyay A.,

Bisagni J. J. Interannual variability of Gulf Stream warm-core rings in response to the North Atlantic Oscillation. Continental Shelf Research. 2009. Vol. 29 (7). P. 856–869. URL: https://doi.org/10.1016/j.csr.2009.01.008. (data zvernennia: 30.07.2022). 9. Weiser J., Titschack J., Kienast M., McCave I. N., Lochte A. A., Saini J., Stein R., Hebbeln D. Atlantic water inflow to Labrador Sea and its interaction with ice sheet dynamics during the Holocene. Quaternary Science Reviews. 2021. Vol. 256. Р. 106833. URL: https://doi.org/10.1016/j.quascirev.2021.106833. (data zvernennia: 30.07.2022). 10. Lisetskii F., Chepelev O. Quantitative substantiation of pedogene-sis model key components. Advances in Environmental Biology. 2014.

Vol. 8(4). P. 996–1000. 11. Lisetskii F., Pichura V. Steppe Ecosystem Functioning of East European Plain under Age-Long Climatic Change Influence. Indian Journal of Science and Technology. 2016. Vol. 9(18). P. 1–9. DOI: 10.17485/ijst/2016/v9i18/93780. 12. Dudiak N. V., Potravka L. A., Stroganov A. A. Soil and climatic bonitation of agricultural lands of the steppe zone of Ukraine. In-dian Journal of Ecology. 2019. Vol. 46(3). P. 534–540. 13. Pichura V. I., Malchykova D. S., Ukrainskij P. A., Shakhman I. A., Bystriantseva A. N. Anthropogenic trans-formation of hydrological regime of the Dnieper river. Indian Journal of Ecology. 2018. Vol. 45(3). P. 445–453. 14. Pichura V. I., Potravka L. A., Skrypchuk P. M., Stratichuk N. V. Anthropogenic and climatic causality of changes in the hydrological regime of the Dnieper river. Journal of Ecological Engineering. 2020. Vol. 21 (4). P. 1–10. DOI: https://doi.org/10.12911/22998993/119521.

Oti J. O., Kabo-Bah A. T., Ofosu E. Hydrologic response to climate change in the Densu River Basin in Ghana. Heliyon. 2020. Vol. 6 (8). URL: https://doi.org/10.1016/j.heliyon.2020.e04722. (data zvernennia: 30.07.2022). 16. Lisetskii F. Rivers in the focus of natural-anthropogenic situations at catchments. Geosciences (Switzerland). 2021. Vol. 11(2). P. 1–6. 17. Assan E., Suvedi M., Olabisi L. S., Bansah K. J. Climate change perceptions and challenges to adaptation among smallholder farmers in semi-arid Ghana: A gender analysis. Journal of Arid Envi-ronments. 2020. Vol. 182. Р. 104247. URL: https://doi.org/10.1016/j.jaridenv.2020.104247. (data zvernennia: 30.07.2022). 18. Ukrainskiy P., Terekhin E., Gusarov A., Lisetskii F. Zelenskaya E. 2020. The influence of relief on the density of light-forest trees within the small-dry-valley network of up-lands in the forest-steppe zone of eastern Europe. Geosciences (Switzerland). 2020. Vol. 10(11). P. 1–18. 19. Dudiak N. V., Pichura V. I., Potravka L. A., Stratichuk N. V. Ge-omodelling of destruction of soils of Ukrainian steppe due to water erosion. Jour-nal of Ecological Engineering. 2019. Vol. 20(8). P. 192–198. URL: https://doi.org/10.12911/22998993/110789. (data zvernennia: 30.07.2022). 20. Dudiak N. V., Pichura V. I., Potravka L. A., Stroganov A. A. Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecologi-cal Engineering. 2020. Vol. 21(2). P. 166–177. URL: https://doi.org/10.12911/22998993/116321. (data zvernennia: 30.07.2022). 21. Breus D., Yevtushenko O., Skok S., Rutta O. Retrospective studies of soil fertility change on the example of the Kherson region (Ukraine). International Multidisci-plinary Scientific GeoConference Surveying Geology and Mining Ecology Manage-ment, SGEM. 2019. Vol. 19(5.1). Р. 645–652. 22. Breus D., Yevtushenko O.,

Skok S., Rutta O. 2020. Method of forecasting the agro-ecological state of soils on the example of the South of Ukraine. International Multidisciplinary Scientific Ge-oConference Surveying Geology and Mining Ecology Management, SGEM. 2020. Vol. 20 (5.1). P. 523–528. 23. Lisetskii F. N., Pichura V. I. Catena linking of landscape-geochemical processes and reconstruction of pedosedimentogenesis: A case study of defensive constructions of the mid-17th century, South Russia. Catena. 2020. Vol. 187. Р. 104300. 24. Domaratskiy E. O., Bazaliy V. V., Domaratskiy O. O., Dobrovolskiy A. V., Kyrychenko N. V., Kozlova O. P. Influence of mineral nutrition and combined growth regulating chemical on nutrient status of sunflower. Indian Journal of Ecology. 2018. Vol. 45(1). P. 126–129. 25. Maheras P. Changes in precipitation conditions in the western Mediterranean over the last century. J. Climatol. 1988. Vol. 8. P. 179–189. 26. Maheras P. Principal component analysis of western Mediterranean air temperature variations 1866–1985. Theor. Appl. Climatol. 1989. Vol. 39. P. 137–145.

Published

2022-09-09

Issue

Section

Articles