DYNAMICS OF SOIL CATALASE ACTIVITY IN THE POST-PYROGENIC FOREST ECOSYSTEM
Keywords:
soil, catalase activity, post-pyrogenic forest ecosystem, abiotic factors.Abstract
It is important to track and analyze the ecological restoration of forest ecosystems after fires. This is especially relevant in regions where historically such phenomena have occurred infrequently. Global warming increases the relevance of such research. A sensitive diagnostic criterion is the enzymatic activity of the soil. This is closely related to the physico-chemical properties of the soil, its microbial biomass and vegetation, which undergo significant changes and transformations in the post-pyrogenic period. The aim of our research was to track the dynamics of catalase activity in the soil within the sub-forests of the south-eastern part of the Volyn Polissia after a medium-intensity fire. The research lasted from June 2021 to November 2022 in a forest area with sparse stands. Sampling of soil to determine the activity of catalase enzyme was carried out every month. At the same time, instrumental determination of soil temperature, humidity, and pH was carried out at the sampling site. This made it possible to monitor the effect of seasonal changes in abiotic environmental factors on enzymatic activity. During eighteen months of observation, a 3-fold increase in the activity of the catalase enzyme was noted: from 0.92±0.2 mgO2/g/min to 2.10±0.17 mgO2/g/min, with peak values in September 2022. which was at the level of 3.13±0.31 mgO2/g/min. The statistical significance of the linear dependence of soil temperature (r=0.58), soil moisture (r=0.57) and soil pH (r=0.64) on its catalase activity was confirmed. The multivariate regression dependence of the same factors simultaneously had a close relationship (r=0.97). It is assumed that among all analyzed abiotic factors, the change in pH against the background of seasonal temperature fluctuations and corresponding changes in soil moisture has a decisive influence on the processes of restoration of catalase activity of post-fire forest soil. Continuation of such research may be valuable in view of the development of tools for early diagnosis of recovery of the post-pyrogenic soil of the forest ecosystem of the southeastern part of the Volyn Polissia. This is also an important task in the management and restoration programs of Ukraine's post-fire territories.References
The state of the World's Forests. Forests, biodiversity and people. FAO, UNEP. Rome. 2020. 214 p. URL: https://www.fao.org/3/ca8642en/ca8642en.pdf (дата звернення: 14.11.2022).
Burrell A. L., Sun Q., Baxter R., Kukavskaya E. A. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Science of The Total Environment. 2022. Vol. 831. Р. 154885.
Certini G. Effects of fire on properties of forest soils: a review. Oecologia. 2005. Vol. 143(1). P. 1–10.
Zema D. A. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Science of The Total Environment. 2021. Vol. 753. P. 142006.
Zema D. A. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology. 2021. URL: https://doi.org/10.1002/eco.2276 (дата звернення: 10.11.2022).
Пірогенна трансформація сосняків України / Ворон В. П., Коваль І. М., Сидоренко С. Г., Мельник Є. Є., Ткач О. М., Борисенко В. Г., Тимощук І. В., Бологов О. Ю. Харків : ТОВ «Планета-Прінт». 2021. 286 с.
Wagenbrenner J. W., Ebel B. A.,
Bladon K. D., Kinoshita A. M. Post-wildfire hydrologic recovery in Mediterranean climates: A systematic review and case study to identify current knowledge and opportunities. Journal of Hydrology. 2021. Vol. 602. P. 126772.
Robichaud P. R., Ashmun L. E., Sims B. D. Post-fire treatment effectiveness for hillslope stabilization. Ft. Collins, CO U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2010. URL: https://doi.org/10.2737/rmrs-gtr-240 (дата звернення: 10.11.2022).
Про затвердження Правил пожежної безпеки в лісах України : Наказ Держ. ком. ліс. госп-ва України від 27.12.2004 р. № 278. URL: https://zakon.rada.gov.ua/laws/show/z0328-05#Text (дата звернення: 10.11.2022).
Smirnova E., Bergeron Y., Brais S. Influence of fire intensity on structure and composition of jack pine stands in the boreal forest of Quebec: Live trees, understory vegetation and dead wood dynamics. Forest Ecology and Management. 2008. Vol. 255(7). P. 2916–2927.
Glenn N. F., Finley C. D. Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrush-steppe: I. Field analysis. Journal of Arid Environments. 2010.
Vol. 74(6). P. 653–659.
Marozas V., Racinskas J., Bartkevicius E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management. 2007. Vol. 250(1–2). P. 47–55.
Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes / Qi R., Li J., Lin Z., Li Z., Li Y., Yang X., Zhang J., Zhao B. Applied Soil Ecology. 2016. Vol. 102. P. 36–45.
Kivlin S. N., Treseder K. K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry. 2013. Vol. 117(1). P. 23–37.
Kooch Y., Sanji R., Tabari M. Increasing tree diversity enhances microbial and enzyme activities in temperate Iranian forests. Trees. 2018. Vol. 32. № 3. P. 809–822.
Banerjee S., Bora S., Thrall P. H., Richardson A. E. Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Applied Soil Ecology. 2016. Vol. 105. P. 1–8.
Burns R. G., DeForest J. L., Marxsen J., Sinsabaugh R. L. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry. 2013. Vol. 58. P. 216–234.
Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau / Xu H., Liu G., Wu X., Smoak J. M., Mu C. Ecological Indicators. 2018. Vol. 85. P. 585–593. 1
Krämer S. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry. 2000. Vol. 32(2). P. 179–188.
Brockett B. F. T., Prescott C. E., Grayston S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry. 2012. Vol. 44(1). P. 9–20.
The enzymatic and physiological response of the microbial community in semiarid soil to carbon compounds from plants / Torres I. F., García C., Ruiz-Navarro A., Hernández T., Bastida F. European Journal of Soil Science. 2016. Vol. 67(4). P. 456–469.
Patterns of soil microorganisms and enzymatic activities of various forest types in coastal sandy land / Fan L., Tarin M. W. K., Zhang Y., Han Y., Rong J. Global Ecology and Conservation. 2021. Vol. 28. e01625. 11 p. 23. Simple kinetics, assay, and trends for soil microbial catalases / Georgiou C. D., Sun H. J., McKay C. P., Grintzalis K., Papapostolou I., Zisimopoulos D., Panagiotidis K., Zhang G. S., Koutsopoulou E., Christidis G. E., Margiolaki I. Analytical Biochemistry. 2020. Vol. 610. P. 113901.
REFERENCES:
The state of the World's Forests. Forests, biodiversity and people. FAO, UNEP. Rome. 2020. 214 p. URL: https://www.fao.org/3/ca8642en/ca8642en.pdf (data zvernennia: 10.11.2022).
Burrell A. L., Sun Q., Baxter R., Kukavskaya E. A. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Science of The Total Environment. 2022. Vol. 831. Р. 154885.
Certini G. Effects of fire on properties of forest soils: a review. Oecologia. 2005. Vol. 143(1). P. 1–10.
Zema D. A. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Science of The Total Environment. 2021. Vol. 753. P. 142006.
Zema D. A. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology. 2021. URL: https://doi.org/10.1002/eco.2276 (data zvernennia: 10.11.2022).
Pirohenna transformatsiia sosniakiv Ukrainy / Voron V. P., Koval I. M., Sydorenko S. H., Melnyk Ye. Ye., Tkach O. M., Borysenko V. H., Tymoshchuk I. V., Bolohov O. Yu. Kharkiv : TOV «Planeta-Print». 2021. 286 s.
Wagenbrenner J. W., Ebel B. A., Bladon K. D., Kinoshita A. M. Post-wildfire hydrologic recovery in Mediterranean climates: A systematic review and case study to identify current knowledge and opportunities. Journal of Hydrology. 2021. Vol. 602. P. 126772.
Robichaud P. R., Ashmun L. E., Sims B. D. Post-fire treatment effectiveness for hillslope stabilization. Ft. Collins, CO U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2010. URL: https://doi.org/10.2737/rmrs-gtr-240 (data zvernennia: 10.11.2022).
Pro zatverdzhennia Pravyl pozhezhnoi bezpeky v lisakh Ukrainy : Nakaz Derzh. kom. lis. hosp-va Ukrainy vid 27.12.2004 r. № 278. URL: https://zakon.rada.gov.ua/laws/show/z0328-05#Text (data zvernennia: 10.11.2022).
Smirnova E., Bergeron Y., Brais S. Influence of fire intensity on structure and composition of jack pine stands in the boreal forest of Quebec: Live trees, understory vegetation and dead wood dynamics. Forest Ecology and Management. 2008. Vol. 255(7). P. 2916–2927.
Glenn N. F., Finley C. D. Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrush-steppe: I. Field analysis. Journal of Arid Environments. 2010.
Vol. 74(6). P. 653–659.
Marozas V., Racinskas J., Bartkevicius E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management. 2007. Vol. 250(1–2). P. 47–55.
Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes / Qi R., Li J., Lin Z., Li Z., Li Y., Yang X., Zhang J., Zhao B.Applied Soil Ecology. 2016. Vol. 102. P. 36–45.
Kivlin S. N., Treseder K. K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry. 2013. Vol. 117(1). P. 23–37.
Kooch Y., Sanji R., Tabari M. Increasing tree diversity enhances microbial and enzyme activities in temperate Iranian forests. Trees. 2018. Vol. 32. № 3. P. 809–822.
Banerjee S., Bora S., Thrall P. H., Richardson A. E. Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Applied Soil Ecology. 2016. Vol. 105. P. 1–8.
Burns R. G., DeForest J. L., Marxsen J., Sinsabaugh R. L. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry. 2013. Vol. 58. P. 216–234.
Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau / Xu H., Liu G., Wu X., Smoak J. M., Mu C. Ecological Indicators. 2018. Vol. 85. P. 585–593.
Krämer S. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry. 2000. Vol. 32(2). P. 179–188.
Brockett B. F. T., Prescott C. E., Grayston S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry. 2012. Vol. 44(1). P. 9–20.
The enzymatic and physiological response of the microbial community in semiarid soil to carbon compounds from plants / Torres I. F., García C., Ruiz-Navarro A., Hernández T., Bastida F. European Journal of Soil Science. 2016. Vol. 67(4). P. 456–469.
Patterns of soil microorganisms and enzymatic activities of various forest types in coastal sandy land / Fan L., Tarin M. W. K., Zhang Y., Han Y., Rong J. Global Ecology and Conservation. 2021. Vol. 28. e01625. 11 p. 23. Simple kinetics, assay, and trends for soil microbial catalases / Georgiou C. D., Sun H. J., McKay C. P., Grintzalis K., Papapostolou I., Zisimopoulos D., Panagiotidis K., Zhang G. S., Koutsopoulou E., Christidis G. E., Margiolaki I. Analytical Biochemistry. 2020. Vol. 610. P. 113901.