DIAGNOSTICS OF SOIL DEGRADATION OF FOREST, AGRICULTURAL AND WETLAND ECOSYSTEMS DAMAGED BY UNAUTHORIZED AMBER MINING

Authors

  • O. O. Biedunkova National University of Water and Environmental Engineering, Rivne
  • V. О. Klymenko Polissia National University

DOI:

https://doi.org/10.31713/vs420221

Keywords:

degraded soils, diagnosis of soil condition, unauthorized amber mining, remediation.

Abstract

Mining poses a significant threat to the state of ecosystems. The problem becomes a major concern if mining is conducted in an illegal manner. Thus, the unauthorized extraction of amber in the territory of north-western Ukraine led to the degradation of forest, agricultural and wetland ecosystems. In world science, it is recognized that in view of preserving the ecosystem functions of the soil and developing measures to restore its condition, it is important to diagnose the degree of soil degradation. The article presents the results of the development of a scale for assessing soil degradation disturbed by unauthorized amber mining. Research was conducted on the territory of forestry enterprises of the Rivne region. Turf-podzolic, turf-podzolic gleyed and turf-gley soils on different types of ecosystems were studied. The selected samples were analysed for physico-chemical (pH of salt extract), agrochemical (mobile phosphorus content, potassium content, alkaline hydrolysed nitrogen, humus content) and physical (soil density indicators, minimum moisture capacity indicators) parameters. A comparison of the physical, physico-chemical, and agrochemical conditions of undisturbed and disturbed areas due to amber mining was carried out. Indicators were normalized according to their stimulating or unstimulating value with further aggregation. At the same time, the weighted average indicators were calculated. We proposed a scale to assess soil degradation of forest, agricultural and wetland ecosystems damaged by unauthorized amber mining. It is recommended to diagnose soils disturbed by amber mining using a set of indicators normalized on a scale from 0 to 1 using formulas for stimulators and destimulators using quantitative and qualitative signs of the degree of disturbance: 1.0–0.68 – slightly disturbed; 0.68–0.48 – partially broken; 0.48–0.19 – very disturbed; 0.19–0 – strongly disturbed. Based on the established degree of degradation, it becomes possible to rationally choose approaches to the remediation and reclamation of the soils of forest, agricultural and wetland ecosystems damaged by unauthorized amber mining.

Author Biographies

O. O. Biedunkova, National University of Water and Environmental Engineering, Rivne

Doctor of Biological Science, Professor 

V. О. Klymenko, Polissia National University

Post-graduate Student

References

Navarrete A. A., Aburto F., González-Rocha G., Guzmán C. M., Schmidt R., Scow K. Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. Science of The Total Environment. 2022. P. 158508.

Геоекологія Львівської області : монографія / Ю. Андрейчук, Л. Безручко, В. Біланюк та ін. / за заг. ред. Є. Іванова. Львів : Простір-М, 2021. 606 с.

Zahedifar M. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. CATENA. 2023. Vol. 222. P. 106807.

Moomen A. W., Dewan A. Assessing the spatial relationships between mining and land degradation: evidence from Ghana. International Journal of Mining, Reclamation and Environment. 2016. Vol. 31. No. 7. P. 505–518.

Guo X. M., Zhao T. Q., Chang W. K., Xiao C. Y., He Y. X. Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean journal of agricultural research. 2018. Vol. 78. No. 2. P. 173–182.

Ковалевський С. Б., Марчук Ю. М., Маєвський К. В., Курдюк О. М. Бурштин на території Українського Полісся: утворення, видобуток, наслідки. Лісове і садово-паркове господарство. 2017. № 13. 16 с. URL: http://journals.nubip.edu.ua/index.php/Lis/article/view/9528/87377 (дата звернення: 18.11.2022).

Державне агентство лісових ресурсів України. Офіційний сайт. URL: https://forest.gov.ua/ (дата звернення: 24.11.2022).

ДСТУ 7875:2015. Охорона ґрунтів. Екологічне нормування антропогенного навантаження на ґрунтовий покрив. Основні положення. Технічний комітет стандартизації «Ґрунтознавство» (ТК 142) від 22.06.2015. URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=62757 (дата звернення: 19.11.2022).

Земельний кодекс України: чинне законодавство зі змінами та допов. станом на 18.10.2022 р. К. : ПАЛИВОДА А. В., 2022. 184 с.

Z. Li et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. Journal of Environmental Management. 2021. Vol. 277. P. 111402.

Zhen Q., Ma W., Li M., He H., Zhang X., Wang Y. Reprint of “Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China”. CATENA. 2017. Vol. 148. P. 17–25.

Ma K., Zhang Y., Ruan M., Guo J., Chai T. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. International Journal of Environmental Research and Public Health. 2019. Vol. 16, no. 20. P. 3929.

Anderson T.-H. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment. 2003. Vol. 98. No. 1–3. P. 285–293.

Ditzler C. A., Tugel A. J. Soil Quality Field Tools. Agronomy Journal. 2002. Vol. 94. No. 1. P. 33–38.

Moosavi A. A., Sepaskhah A. Artificial neural networks for predicting unsaturated soil hydraulic characteristics at different applied tensions. Archives of Agronomy and Soil Science. 2012. Vol. 58. No. 2. P. 125–153.

Raiesi F., Beheshti A. Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. CATENA. 2022. Vol. 208. P. 105778.

Karaca S., Dengiz O., Demirağ T., Özkan B. et al. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem. Ecological Indicators. 2021. Vol. 121. P. 107001. 18. Davari M., Gholami L., Nabiollahi K., Homaee M. et al. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research. 2020. Vol. 198. P. 104504.

Sirsat M. S., Cernadas E., Fernández-Delgado M., Khan R. Classification of agricultural soil parameters in India. Computers and Electronics in Agriculture. 2017. Vol. 135. P. 269–279.

Ogen Y., Zaluda J., Francos N., Goldshleger N., et al. Cluster-based spectral models for a robust assessment of soil properties. Geoderma. 2019. Vol. 340. P. 175–184.

Wang Z., Wang G., Ren T., Wang H. et al. Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning. Ecological Indicators. 2021. Vol. 125. P. 107608.

ДСТУ ISO 10381-4:2005. Якість ґрунту. Відбирання проб. Настанови щодо процедури дослідження природних, майже природних та оброблюваних ділянок (ISO 10381-4:2003, IDT). Київ : Держспоживстандарт України. 2007. Ч. 4. 16 с.

Тихоненко Д. Г., Горін М. О., Лактіонов М. І. Ґрунтознавство : підручник. Київ : Вища освіта, 2005. 703 с.

REFERENCES:

Navarrete A. A., Aburto F., González-Rocha G., Guzmán C. M., Schmidt R., Scow K. Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. Science of The Total Environment. 2022. P. 158508.

Heoekolohiia Lvivskoi oblasti : monohrafiia / Yu. Andreichuk, L. Bezruchko, V. Bilaniuk ta in. / za zah. red. Ye. Ivanova. Lviv : Prostir-M, 2021. 606 s.

Zahedifar M. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. CATENA. 2023. Vol. 222. P. 106807.

Moomen A. W., Dewan A. Assessing the spatial relationships between mining and land degradation: evidence from Ghana. International Journal of Mining, Reclamation and Environment. 2016. Vol. 31. No. 7. P. 505–518.

Guo X. M., Zhao T. Q., Chang W. K., Xiao C. Y., He Y. X. Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean journal of agricultural research. 2018. Vol. 78. No. 2. P. 173–182.

Kovalevskyi S. B., Marchuk Yu. M., Maievskyi K. V., Kurdiuk O. M. Burshtyn na terytorii Ukrainskoho Polissia: utvorennia, vydobutok, naslidky. Lisove i sadovo-parkove hospodarstvo. 2017. № 13. 16 s. URL: http://journals.nubip.edu.ua/index.php/Lis/article/view/9528/87377 (data zvernennia: 18.11.2022).

Derzhavne ahentstvo lisovykh resursiv Ukrainy. Ofitsiinyi sait. URL: https://forest.gov.ua/ (data zvernennia: 24.11.2022).

DSTU 7875:2015. Okhorona gruntiv. Ekolohichne normuvannia antropohennoho navantazhennia na gruntovyi pokryv. Osnovni polozhennia. Tekhnichnyi komitet standartyzatsii «Gruntoznavstvo» (TK 142) vid 22.06.2015. URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=62757 (data zvernennia: 19.11.2022).

Zemelnyi kodeks Ukrainy: chynne zakonodavstvo zi zminamy ta dopov. stanom na 18.10.2022 r. K. : PALYVODA A. V., 2022. 184 s.

Z. Li et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. Journal of Environmental Management. 2021. Vol. 277. P. 111402.

Zhen Q., Ma W., Li M., He H., Zhang X., Wang Y. Reprint of “Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China”. CATENA. 2017. Vol. 148. P. 17–25.

Ma K., Zhang Y., Ruan M., Guo J., Chai T. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. International Journal of Environmental Research and Public Health. 2019. Vol. 16, no. 20. P. 3929.

Anderson T.-H. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment. 2003. Vol. 98. No. 1–3. P. 285–293.

Ditzler C. A., Tugel A. J. Soil Quality Field Tools. Agronomy Journal. 2002. Vol. 94. No. 1. P. 33–38.

Moosavi A. A., Sepaskhah A. Artificial neural networks for predicting unsaturated soil hydraulic characteristics at different applied tensions. Archives of Agronomy and Soil Science. 2012. Vol. 58. No. 2. P. 125–153. 16. Raiesi F., Beheshti A. Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. CATENA. 2022. Vol. 208. P. 105778.

Karaca S., Dengiz O., Demirağ T., Özkan B. et al. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem. Ecological Indicators. 2021. Vol. 121. P. 107001.

Davari M., Gholami L., Nabiollahi K., Homaee M. et al. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research. 2020. Vol. 198. P. 104504.

Sirsat M. S., Cernadas E., Fernández-Delgado M., Khan R. Classification of agricultural soil parameters in India. Computers and Electronics in Agriculture. 2017. Vol. 135. P. 269–279.

Ogen Y., Zaluda J., Francos N., Goldshleger N., et al. Cluster-based spectral models for a robust assessment of soil properties. Geoderma. 2019. Vol. 340. P. 175–184.

Wang Z., Wang G., Ren T., Wang H. et al. Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning. Ecological Indicators. 2021. Vol. 125. P. 107608.

DSTU ISO 10381-4:2005. Yakist gruntu. Vidbyrannia prob. Nastanovy shchodo protsedury doslidzhennia pryrodnykh, maizhe pryrodnykh ta obrobliuvanykh dilianok (ISO 10381-4:2003, IDT). Kyiv : Derzhspozhyvstandart Ukrainy. 2007. Ch. 4. 16 s.

Tykhonenko D. H., Horin M. O., Laktionov M. I. Gruntoznavstvo : pidruchnyk. Kyiv : Vyshcha osvita, 2005. 703 s.

Published

2023-02-01

Issue

Section

Articles