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MODELING OF NON-STATIONARY HEAT CONDUCTION IN LAYERED
MEDIUM

A method for determination of thermal condition of layered medium is
offered. Legendre polynomials are used as basis functions of the
problem. The proposed approach allows to formalize an algorithm of
the solution of a non-stationary heat conduction problem and to select
a class of objects to which the given approach can be applied.
Keywords: layered medium, heat conduction, film heat source.

1. Introduction

The majority of publications, devoted to thermal state of laminated
structures, deal with deformation of such structures under conditions of
steady temperature fields or dynamic temperature fields with
prescribed distribution through the thickness [1]. The hypothesis about
a piecewise-linear temperature distribution through the thickness of a
laminated package is often applied [2]. However, the non-stationary
character of a problem requires a more exact description of the
temperature field obtained directly from solution of a heat conduction
equation.

Methods for solving of non-stationary heat conduction problems
are based on difference schemes [2]. Analytical approaches are used
less commonly used analytical approaches [3]. For multilayer elements
in structures, heat conduction problems are solved by involving
different kinds of hypotheses on temperature distribution over the
thickness of the pack of layers. The majority of papers use the following
numerical computation methods: the finite difference method, the
boundary elements method, and finite elements method.

Jane and Wu [4] used the Laplace transform and the finite
difference method for solving dynamic and static thermal elasticity
problems for multilayer conical shells. Using the finite elements
method, Oguamanam et al. [5] studied the nonlinear response of a
laminated symmetrical orthogonally reinforced cylindrical panel to
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sudden application of a heat flux. The panel is cantilevered to a hub with
limited rotation around the central axis of rotation. The temperature
field thickness is constant and changes exponentially with time. The
system of nonlinear equations is solved with the Newton-Raphson
method jointly with the Newmark integration method.

Diakoniuk and Savula [6] considered initially the boundary value
problem of thermal conductivity in a multilayered medium with small
layer thicknesses. For numerical investigation of the solution new
semianalytic finite elements method is used.

The paper presents a method for solution of the one-dimensional
non-stationary heat conduction problem in a laminated medium with an
internal heat source based on introduction of the temperature
distribution in each layer by a system of Legendre polynomials.

2. Statement of the problem
Let us consider a layered wall made up of | layers with constant

thickness & (i=1,_l). Convective heat transfer occurs on the top and

bottom surfaces of the wall.

The non-stationary heat conduction equation and the boundary
conditions for a multilayer layered medium are derived from the heat
balance variational equation [7].

The heat equation for the i th layer has the form

T
var =L i1, (1)
ot

where v, =1/(yc,) is the thermal diffusivity, A is the thermal
conductivity, 7, is the density of the ! th layer material, ¢, is the specific
heat at constant volume of the ith layer, 7, is temperature, ¢ is time, »
is the number of layers.

We take T7,(0)=const as initial conditions. Besides, we suppose

that the boundary condition of convective heat transfer over the top and
bottom surfaces is the third kind boundary condition

MV =a,(T, =), =1, VT, = o, [T, - 7,(0.0)], (2)
where o, and o, are the convective heat transfer coefficients and 7,
and 7, are temperatures on the top and bottom surfaces, respectively.

The conditions of equality of heat flows and temperatures on interfaces
of layers are:
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We assume that a heat-generating film with intensity P is placed
between the first and the second layers. Then the condition of the heat
flow transfer between the layers is

VT, +\,VT, =P. (4)
3. Method of the problem solution
We seek a solution for each layer in the form

T(z;.t) = ale)fy(6)+ ble) 1 () + (0} (x) ()
where x=z,/h, 0<z <h, 0<x<l.Coordinate z, is measured from

an internal surface of each layer.
As functions f,,k=1,2,3, we choose Legendre orthonormal

polynomials
fi=1, f,=30x-1), f3=\/§(6x2—6x+1). (6)

1
[ firax=3,. (7)
0

Projecting the equation (1) to functions (3), we obtain

L (0050 ) )0 e -

- A G AS A (8)
0
that in view of the condition (7) we get
a(0)=wele) e =1245v, /s B(0)=0; &(e)=0. (9)

Taking into account (2) and (5), we obtain the following equalities

7;1—11 [2\/5191 (£)+ 6v5¢, (t)]= o, [Tz —ay ()35, (1) =56, (t)]
2 3, 0)- 656, 0] 0, ()30 5o, 0] (10

The conditions (3) and (4) take the form
a; _\/Ebi +\/§Ci =i _\/Ebm +\/§Ci+1- (11)
—%[hﬁbl(t)—6\/§c1(t)]+%[2\/§bz(t)+6\/§c2(t)]=P, (12)
1 2

The unknown functions we find from conditions (10)-(12). We form
a system of linear algebraic equations in coefficients a, (), b,(¢) and

cik(t)
[s]v=0q, (13)
where

S =G Spp :\/E(at +2ﬂ1/h1)' S13 :\/g(at +6/11/h1)'
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S22 = _2\/57‘1/}‘1 » S23 :6\/57”1/}‘ v 524 = 2\/57‘2/}‘2- S25 = 6\/57”2/}‘2 ’
s =1, 53 =3, S33:\/§- S34 =1, S35:_\/§- S36:_\/§-
S45 = _2\/57‘2/}‘2 v Sa6 = 6\/57‘2/}‘2 » S48 = 2\/57”3/}‘3 '
Sa9 :6\/57‘3/}‘3 S5 =1, 855 =3, 53 =45,
S54:—1, S55:_'\/§. S56:_'\/§v ey
Son-23n-4 = _2\/57%71/}’:171 v S2p-23n-3 = 6\/57%71 /hn—l v Sop-23n-1 7 2\/57\’11/}[11 ,
Son-2n = 6\/57\’11 /hn v $20-13n-5 =1, Son-13n-4 = _\/E v Sop 1303 = \/g ’
Son-13n-2 = ~Lv Sy 13401 = _\/5- Son-13n = _JE, San3n—2 = Opo
S2n,3n—l = _\/E(a‘b +2}\’n /hn)' S2n,3n = \/g(a‘b +6}\’n/hn)'
=01y, g=P, q5, =, T},
vi=a, v,=b, vs=¢, .., vV, y=a,, v,,,=b,, v,=c,.

The remaining components of the matrix and the right side vector
are zero. The solution obtained in this case at each time step will be
exactly satisfy the boundary conditions and conditions on interfaces of
layers. Non-stationary feature will be reflected in the fact that the
functions a,(z) we determine from the Cauchy problem.

The matrix of system (13) [s] has 2» rows and 3» columns. We
express the functions b,(¢) and ¢,(¢) through «,(¢) and the vector Q. We
transfer coefficients at 4,(¢) to the right side and form the matrix [B]. We
denote the matrix in the left side as [A]. It has the order 2nx2n.

Then we get the system

[A]Y =[B]X+Q (14)
where Y is vector with components 5,(¢), ¢,(t) (i=1,...,n), and X is
vector of coefficients a,(t).

We write the solution of the system (14) as
Y=[a]'[B]x+[A]"'Q.

Then we solve this system of differential equations by a modified

method of expanding the solution into a Taylor series [8; 9].
4. Conclusion

A method for solution of non-stationary heat conduction problem
in layered wall is proposed. The transient temperature change is caused
by an impulse action of a distributed heat source simulating a heat-
generating film. Temperature distribution through the thickness of each
layer is represented by using Legendre orthonormal polynomials, which
allows authentic description of the thermal condition of layered
elements assembled from layers with different mechanical and
geometrical characteristics.
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The solution of such problems has practical importance, as the
results of this research can be applied, for example, to the analysis of
the efficiency of heating systems.
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CMeTaHkuHa H. B,, c.H.c., A.T.H., MocTHui 0. B. (lHcTUTYT Npobnem
MawunHobyayBaHHA iM. A.M. MNigropHoro HAH YkpaiHu, M. XapkiB)

MOLOENOBAHHA HECTALIOHAPHOI TEMJ10NPOBIQHOCTI
LUAPYBATOIO CEPEAOBULLA

3anponoHOBaHO MeTOA BU3HAYE€HHSA TEMNJIOBOro CTaHy WapyBaToro ce-
pepoBuwa. Ak 6a3ncHi pyHKUIT 3aaaYi ANA KOXKHOrO LWapy BUKOPUCTO-
BYlOTbCS noniHomu Jlexxanapa. Po3po6neHui nigxin na€e MOXXnNuUBICTb
dopmMmanisyBaTtu anropuTm po3B'sai3aHHA HeCTaUlioOHApHOI 3aaadi Tensio-
npoBigHOCTI i BUAINUTU KNac 06'eKTiB, ANa AKX AaHUN Niaxig MOXKHA
3acrocyBaTum.

KnrouoBi cnoBsa: wapyBsaTe cepenoBulle, TeNJONPOBiIiAHICTb, NJIiIBKOBE
p)xepeno Tenna.

CMmeTaHkuHa H. B., ctapwumnit Hay4HbI COTPYAHUK, AOKTOP TEXHUYECKUX
HayK, MocTHbin A. B. (MHCTUTYT Npo6eM MalWMHOCTPOEHMSA
nm. A.H. MoaropHoro HAH YkpauHbl, XapbKoB)

MOAEJSIMPOBAHUE HECTALLMUOHAPHOM TEMJ10NPOBOAHOCTU
CNIOUCTOM CPEADI

MpepnoxkeH MmeTon onpepesieHUs TeN10BOro COCTOSIHMA CJIOUCTOM cpe-
Abl. Kak 6a3ucHble pyHKLUMM 3aQa4m A1 KAXKAOr0 /oS UCNOJb3YHTCA
nonuHoMmbl JlexxaHapa. PaspaboTaHHbI noaxon AaeT BO3MOXXHOCTb
dopmanusoBaTb anropMTM pelleHUs HecTauMoHapHOMW 3apaayum Tennon-
POBOAHOCTM U BbIAENINTb KJ1AaCC 06bEKTOB, AJIA KOTOPbIX AAHHbIA NoAa-
X0A, MOXXHO NPUMEHUTD.

KnroueBble cnoBa: cnoucrtas cpeaa, TeENJIONPOBOAHOCTb, N1EHOUYHbIN
MCTOYHMK Tenna.
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